
Install .net and upload to azure repository
Installing dotnet SDK
sudo apt-get update
sudo apt-get install dotnet-sdk-3.1
sudo snap install dotnet-sdk

keny@keny-virtual-machine:~$ sudo snap install dotnet-sdk
error: This revision of snap "dotnet-sdk" was published using classic
 confinement and thus may perform arbitrary system changes outside of the
 security sandbox that snaps are usually confined to, which may put your
 system at risk.

 If you understand and want to proceed repeat the command including
 --classic.
keny@keny-virtual-machine:~$ sudo apt-get install dotnet-sdk-3.1
E: Could not get lock /var/lib/dpkg/lock-frontend - open (11: Resource temporarily unavailable)
E: Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), is another process using
it?

wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb -O
packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb

sudo apt-get update; \
 sudo apt-get install -y apt-transport-https && \
 sudo apt-get update && \
 sudo apt-get install -y dotnet-sdk-3.1
Another way from application pakage manager,serch and install.

keny@keny-virtual-machine:~$ whereis dotnet
dotnet: /snap/bin/dotnet

Once the installations are over, create project.Create folder for the project.
keny@keny-virtual-machine:~$ mkdir kenywebapp
keny@keny-virtual-machine:~$ cd kenywebapp/

create dotnet project

dotnet new sln -o KenyApp
cd KenyApp
dotnet new mvc -n KenyApp.web
dotnet sln KenyApp.sln add KenyApp.web\KenyApp.web.csproj
dotnet build --configuration release
dotnet publish --no-build --configuration release

keny@keny-virtual-machine:~/kenywebapp$ dotnet sln KenyApp.sln add
KenyApp.web\KenyApp.web.csproj
Could not find solution or directory `KenyApp.sln`.
Usage: dotnet sln <SLN_FILE> add [options] <PROJECT_PATH>

Arguments:

 <SLN_FILE> The solution file to operate on. If not specified, the command will search the current
directory for one.
 <PROJECT_PATH> The paths to the projects to add to the solution.

Options:
 --in-root Place project in root of the solution, rather than creating a solution folder.
 -s, --solution-folder The destination solution folder path to add the projects to.
 -h, --help Show command line help.
(Path:/home/eny/kenywebapp/KenyApp/KenyApp.web/KenyApp.web.csproj)
keny@keny-virtual-machine:~/kenywebapp/KenyApp$ ls
KenyApp.sln KenyApp.web
keny@keny-virtual-machine:~/kenywebapp/KenyApp$ dotnet sln KenyApp.sln add
KenyApp.web/KenyApp.web.csproj
Project `KenyApp.web/KenyApp.web.csproj` added to the solution.

dotnet KenyApp.web/bin/Release/netcoreapp3.1/KenyApp.web.dll

Once after publish it using command
dotnet publish --no-build --configuration release
This is our final web application builds to use by web server contents where the site hosting.
Contents will be in
/home/Keny/Kenywebapp/KenyApp/KenyApp.web/bin/Release/netcoreapp3.1/publish folder

Create private project under Azure devops

Getting a Git Repository and adding to local
We can obtain a Git repository in two ways:

Take a local directory that is currently not under version control, and turn it into a Git repository,
or
We can clone an existing Git repository from elsewhere.

Initializing a Repository in an Existing Directory
If you have a project directory that is currently not under version control and you want to start
controlling it with Git, you first need to go to that project’s directory.
for the directory is /home/Kenywebapp/Kenyapp

git init
git add .
git commit -m "Intial build tasks"
git config --global user.email "working@mailid"
git config --local -l
git status
git push origin master

git status

Publish to Azure repo

Or

