What is an IP address

An Internet Protocol address (also known as an IP address) is a numerical label assigned to each device (e.g., computer, printer) participating in a computer network that uses the Internet Protocol for communication.[1] An IP address serves two principal functions: host or network interface identification and location addressing. Its role has been characterized as follows: “A name indicates what we seek. An address indicates where it is. A route indicates how to get there.”[2]

The designers of the Internet Protocol defined an IP address as a 32-bit number consisting of 4 octets[1] and this system, known as Internet Protocol Version 4 (IPv4), is still in use today. However, due to the enormous growth of the Internet and the predicted depletion of available addresses, a new version of IP (IPv6), using 128 bits for the address, was developed in 1995.[3] IPv6 was standardized as RFC 2460 in 1998,[4] and its deployment has been ongoing since the mid-2000s.

IP addresses are binary numbers, but they are usually stored in text files and displayed in human-readable notations, such as (for IPv4), and 2001:db8:0:1234:0:567:8:1 (for IPv6).

The Internet Assigned Numbers Authority (IANA) manages the IP address space allocations globally and delegates five regional Internet registries (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers) and other entities.

IP versions

Two versions of the Internet Protocol (IP) are in use: IP Version 4 and IP Version 6. Each version defines an IP address differently. Because of its prevalence, the generic term IP address typically still refers to the addresses defined by IPv4. The gap in version sequence between IPv4 and IPv6 resulted from the assignment of number 5 to the experimental Internet Stream Protocol in 1979, which however was never referred to as IPv5.
IPv4 addresses
Main article: IPv4 § Addressing
Decomposition of an IPv4 address from dot-decimal notation to its binary value.

In IPv4 an address consists of 32 bits which limits the address space to 4294967296 (232) possible unique addresses. IPv4 reserves some addresses for special purposes such as private networks (~18 million addresses) or multicast addresses (~270 million addresses).

IPv4 addresses are canonically represented in dot-decimal notation, which consists of four decimal numbers, each ranging from 0 to 255, separated by dots, e.g., Each part represents a group of 8 bits (octet) of the address. In some cases of technical writing, IPv4 addresses may be presented in various hexadecimal, octal, or binary representations.
IPv4 subnetting

In the early stages of development of the Internet Protocol,[1] network administrators interpreted an IP address in two parts: network number portion and host number portion. The highest order octet (most significant eight bits) in an address was designated as the network number and the remaining bits were called the rest field or host identifier and were used for host numbering within a network.

This early method soon proved inadequate as additional networks developed that were independent of the existing networks already designated by a network number. In 1981, the Internet addressing specification was revised with the introduction of classful network architecture.[2]

Classful network design allowed for a larger number of individual network assignments and fine-grained subnetwork design. The first three bits of the most significant octet of an IP address were defined as the class of the address. Three classes (A, B, and C) were defined for universal unicast addressing. Depending on the class derived, the network identification was based on octet boundary segments of the entire address. Each class used successively additional octets in the network identifier, thus reducing the possible number of hosts in the higher order classes (B and C). The following table gives an overview of this now obsolete system.

Historical classful network architecture Class     Leading
bits     Size of network
number bit field     Size of rest
bit field     Number
of networks     Addresses
per network     Start address     End address
A     0     8     24     128 (27)     16,777,216 (224)
B     10     16     16     16,384 (214)     65,536 (216)
C     110     24     8     2,097,152 (221)     256 (28)

Classful network design served its purpose in the startup stage of the Internet, but it lacked scalability in the face of the rapid expansion of the network in the 1990s. The class system of the address space was replaced with Classless Inter-Domain Routing (CIDR) in 1993. CIDR is based on variable-length subnet masking (VLSM) to allow allocation and routing based on arbitrary-length prefixes.

Today, remnants of classful network concepts function only in a limited scope as the default configuration parameters of some network software and hardware components (e.g. netmask), and in the technical jargon used in network administrators’ discussions.



Posted on September 12, 2014, in Networking. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: